• 文献标题:   Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation
  • 文献类型:   Article
  • 作  者:   EMTSEV KV, ZAKHAROV AA, COLETTI C, FORTI S, STARKE U
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   1098-0121
  • 通讯作者地址:   Max Planck Inst Festkorperforsch
  • 被引频次:   106
  • DOI:   10.1103/PhysRevB.84.125423
  • 出版年:   2011

▎ 摘  要

The electronic structure of decoupled graphene on SiC(0001) can be tailored by introducing atomically thin layers of germanium at the interface. The electronically inactive (6 root 3 x 6 root 3)R30 degrees reconstructed buffer layer on SiC(0001) is converted into quasi-free-standing monolayer graphene after Ge intercalation and shows the characteristic graphene pi bands as displayed by angle-resolved photoelectron spectroscopy. Low-energy electron microscopy (LEEM) studies reveal an unusual mechanism of the intercalation in which the initial buffer layer is first ruptured into nanoscopic domains to allow the local in-diffusion of germanium to the interface. Upon further annealing, a continuous and homogeneous quasifree graphene film develops. Two symmetrically doped (n- and p-type) phases are obtained that are characterized by different Ge coverages. They can be prepared individually by annealing a Ge film at different temperatures. In an intermediate-temperature regime, a coexistence of the two phases can be achieved. In this transition regime, n-doped islands start to grow on a 100-nm scale within p-doped graphene terraces as revealed by LEEM. Subsequently, the n islands coalesce but still adjacent terraces may display different doping. Hence, lateral p-n junctions can be generated on epitaxial graphene with their size tailored on a mesoscopic scale.