▎ 摘 要
We analyze a generalization of the analogue Unruh effect based on curved graphene. To this end, we consider the fourth order in derivatives field theoretic version of the Pais-Uhlenbeck oscillator, for which the Unruh effect may be interpreted as the creation of two different particles with different masses, corresponding to two Klein-Gordon subsystems. For our model, unlike the standard case, electron chirality on the graphene sheet plays a main role, as chirality is essential to distinguish the couple of particles predicted by the Unruh effect associated to the Pais-Uhlenbeck field model.