• 文献标题:   Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor
  • 文献类型:   Article
  • 作  者:   XIE RF, FAN GL, MA Q, YANG L, LI F
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY A
  • ISSN:   2050-7488 EI 2050-7496
  • 通讯作者地址:   Beijing Univ Chem Technol
  • 被引频次:   54
  • DOI:   10.1039/c4ta00395k
  • 出版年:   2014

▎ 摘  要

In this paper, graphene-supported Ni nanocatalyst (Ni/G) was prepared via self-reduction of a hybrid Ni-Al layered double hydroxide/graphene (NiAl-LDH/G) composite precursor. NiAl-LDH/G nanocomposite was assembled via a facile one-step coprecipitation route, which involved the nucleation and growth of NiAl-LDH, simultaneously accompanied by the reduction of graphene oxide without the addition of any reducing agents. The characterization results demonstrated that NiAl-LDH nanoplatelets were homogeneously dispersed on both sides of an exfoliated, structurally flexible graphene The graphene component in the precursor, serving as reducing agent, could in situ reduce Ni2+ species to Ni-0 on heating under an inert atmosphere, thus facilitating the formation of highly dispersed Ni nanoparticles with a uniform size. Compared with those prepared by conventional methods, as-formed graphene-supported Ni nanocatalyst exhibited superior catalytic performance in the liquid phase selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde owing to the much higher metal dispersion and smaller size of Ni nanoparticles in the catalyst. The present finding provides a simple approach to fabricate new types of graphene-supported, metal-based heterogeneous catalysts with advanced catalytic performance.