• 文献标题:   Enhancement of mechanical, thermal and morphological properties of compatibilized graphene reinforced dynamically vulcanized thermoplastic elastomer vulcanizates based on polyethylene and reclaimed rubber
  • 文献类型:   Article
  • 作  者:   PARAN SMR, NADERI G, GHOREISHY MHR, HEYDARI A
  • 作者关键词:   thermoplastic elastomer nanocomposite, graphene nanoplatelet, compatibilizer, interphase, mechanical thermal propertie
  • 出版物名称:   COMPOSITES SCIENCE TECHNOLOGY
  • ISSN:   0266-3538 EI 1879-1050
  • 通讯作者地址:   Iran Polymer Petrochem Inst
  • 被引频次:   6
  • DOI:   10.1016/j.compscitech.2018.04.006
  • 出版年:   2018

▎ 摘  要

The effect of graphene nanoplatelets (GnPs) introduction into the compatibilized multiphase polymer systems such as dynamically vulcanized thermoplastic elastomers (TPVs) based on linear low density polyethylene (LLDPE) and reclaimed rubber (RR) was explored through using the experimental and theoretical analysis. The nanocomposites were prepared by using traditional melt mixing method and characterized by various experimental measurements including transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), Dynamic mechanical thermal analysis (DMTA), tensile test and rheological measurements. The morphological investigations of prepared TPV nanocomposites show the considerable effect of GnPs on the size reduction of rubber droplets. The DSC measurements indicated the role of GnPs as an effective nucleating agent in the TPV nanocomposites. The results of TGA measurements show that the GnPs can cause a higher thermal stability in LLDPE/RR TPVs especially in the presence of a maleated polyethylene (MA-PE) as a compatibilizer. The mechanical properties exploration of TPV nanocomposites represents the considerable effect of GnPs on the increasing of Young's modulus. The analytical stiffness analysis through using Christensen-Lo model with emphasizing the effect of interphase region could precisely predict the effect of various GnPs loading on the Young's modulus. Fabrication of an industrial applicable WV nanocomposites with enhanced mechanical, thermal and morphological properties could be achieved by using both the proper loadings of GnPs and compatibilizer.