• 文献标题:   Enhanced piezoelectric performance of PVDF-based electrospun nanofibers by utilizing in situ synthesized graphene-ZnO nanocomposites
  • 文献类型:   Article
  • 作  者:   HASANZADEH M, GHAHHARI MR, BIDOKI SM
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS SCIENCEMATERIALS IN ELECTRONICS
  • ISSN:   0957-4522 EI 1573-482X
  • 通讯作者地址:  
  • 被引频次:   11
  • DOI:   10.1007/s10854-021-06132-w EA MAY 2021
  • 出版年:   2021

▎ 摘  要

In this study, the graphene-zinc oxide nanocomposite was synthesized by hydrothermal method and used in the preparation of electrospun poly(vinylidene fluoride) (PVDF) nanofibers. For this purpose, PVDF nanofibers containing graphene-ZnO nanocomposite (G-ZnO) were prepared and its microstructure and morphology were studied using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) techniques. The results showed the production of uniform and bead-free nanofibers. The decrease in PVDF nanofiber diameter (about 23%) was observed with addition of synthesized G-ZnO nanocomposite. It was also observed that the incorporation of G-ZnO nanocomposites increased the crystalline and polar beta phase of the PVDF nanofibers and consequently its piezoelectric properties. The PVDF/G-ZnO nanofibrous composite exhibits a peak-to-peak voltage of 840 mV under an applied force of 1 N, which found to be superior than the pristine PVDF (640 mV) and PVDF/ZnO (710 mV) nanofibers. The results of this work provide new insight for the development of flexible piezoelectric nanofibrous devices and energy harvesting systems.