• 文献标题:   Reduced graphene oxide supported palladium nano-shapes for electro-oxidation of oxalic acid
  • 文献类型:   Article
  • 作  者:   KESAVAN L, KALEKAR AM, DAMLIN P, KVAMSTROM C
  • 作者关键词:   palladium nanocube, palladium nanoicosahedron, reduced graphene oxide, hybrid composite, glassy carbon electrode, oxalic acid, electrocatalysi
  • 出版物名称:   JOURNAL OF ELECTROANALYTICAL CHEMISTRY
  • ISSN:   1572-6657 EI 1873-2569
  • 通讯作者地址:   Univ Turku
  • 被引频次:   1
  • DOI:   10.1016/j.jelechem.2019.05.049
  • 出版年:   2019

▎ 摘  要

Size & shape controlled synthesis of metal nanoparticles are of high importance in catalysis. Colloidal techniques offer fine tunings in synthesis process as it involve multiple steps and reaction parameters. An efficient way of producing morphology controlled palladium nanostructures viz. palladium nanocubes (Pd-nc), palladium nanoicosahedrons (Pd-nico) supported on reduced graphene oxide (rGO) and its application in electro-catalysis is reported here. These Pd nano-shapes were achieved via sequential chemical reduction of Pd metal precursor and graphene oxide in the presence of reductant, ethylene glycol (EG) and stabilizer (capping agent), polyvinylpyrrolidone (PVP). Potassium bromide (KBr) and ascorbic acid (AA) were used as structure directing and secondary reducing agents respectively, to tune the geometry of Pd nanoparticles (Pd NPs). The preparation steps were optimized to yield cube shaped Pd nanoparticles (Pd-nc) with mean diameter of 4 nm in the presence of KBr/AA; while in their absence, icosahedron shaped Pd nanoparticles (Pd-nico) with mean diameter of 3.1 nm were formed and then homogeneously distributed over rGO sheets as evidenced by SEM-EDX and TEM. Further, Pd-nc/rGO and Pd-nico/rGO hybrid composite materials were used to investigate the electrochemical oxidation of oxalic acid (OA) in acidic medium. The results reveal that, these optimal size ranged nanostructures exhibit enhanced electro-catalytic activity when compared to bare glassy carbon electrode (GCE), towards OA oxidation. Among the two, Pd-nico/rGO showed enhanced activity than Pd-nc/rGO. The activity difference was justified based on the particle size distribution and no of surface exposed sites. The synthesis approach provides a versatile route for morphology (shape and size) controlled synthesis of metal nanostructures immobilized on support materials aiming towards fabrication of low cost composites in electro-catalysis and potential sensor applications.