• 文献标题:   Grafting redox-active molecules on graphene oxide through a diamine linker: length optimization for electron transfer
  • 文献类型:   Article
  • 作  者:   KHAN R, NISHINA Y
  • 作者关键词:  
  • 出版物名称:   DALTON TRANSACTIONS
  • ISSN:   1477-9226 EI 1477-9234
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1039/d1dt03197j EA DEC 2021
  • 出版年:   2022

▎ 摘  要

A redox-active molecule is grafted on graphene oxide (GO) via successive reactions. In the first step, GO is modified with diamine, which acts as a linker for the redox-active molecule. In the second step, the redox-active molecule is attached to the amino group of the linker by amide bond formation. Through these processes GO is partially reduced, enhancing its electrochemical properties. The structure of the functionalized GO is characterized by XPS, TGA, FTIR, and CV, and applied for electrodes in supercapacitors (SCs). The distance and direction of the redox-active molecule on the electrode affect the SC performance; ethylene diamine is the most promising linker to efficiently transfer electrons from the redox-active molecule to the electrode surface.