▎ 摘 要
We investigate extraordinary magnetoresistance (EMR) of inhomogeneous graphene-metal hybrids using finite element modelling. Inhomogeneous graphene is a binary system made of electron and hole puddles. Two geometries of the embedded metallic structure were considered: circular and fishbone geometries. We found that the breaking of graphene into charge puddles weakens the magnetoresistance of the hybrid system compared to a homogeneous graphene-metal system. For a fixed value of the magnetic field, the magnetoresistance increases with decreasing area fraction occupied by electrons puddles. Fishbone geometry showed an enhanced magnetoresistance compared to circular geometry. The EMR is also investigated as a function of the contact resistance for the fishbone geometry where it was found that a minimal contact resistance is essential to obtain enhanced EMR in graphene-metal hybrid devices. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793647]