• 文献标题:   Small-Angle Ultra-Narrowband Tunable Mid-Infrared Absorber Composing from Graphene and Dielectric Metamaterials
  • 文献类型:   Article
  • 作  者:   LIAO YL, WANG HL, ZHAO Y, CHEN X, WU J, CHEN ZG
  • 作者关键词:   absorption, graphene, nearcollimation, midinfrared absorber
  • 出版物名称:   COATINGS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.3390/coatings11070825
  • 出版年:   2021

▎ 摘  要

We report a small-angle ultra-narrowband mid-infrared tunable absorber that uses graphene and dielectric metamaterials. The absorption bandwidth of the absorber at the graphene Fermi level of 0.2 eV is 0.055 nm, and the absorption peaks can be tuned from 5.14803 to 5.1411 mu m by changing the graphene Fermi level. Furthermore, the resonance absorption only occurs in the angle range of several degrees. The simulation field distributions show the magnetic resonance and Fabry-Perot resonance at the resonance absorption peak. The one-dimensional photonic crystals (1DPCs) in this absorber act as a Bragg mirror to efficiently reflect the incidence light. The simulation results also show that the bandwidth can be further narrowed by increasing the resonance cavity length. As a tunable mid-infrared thermal source, this absorber can possess both high temporal coherence and near-collimated angle characteristics, thus providing it with potential applications.