▎ 摘 要
Owing to its superior properties and versatility, graphene has been proliferating the energy research scene in the past decade. In this contribution, nitrogen (N-) and boron (B-) doped reduced graphene oxide (rGO) variants were investigated as a sole photocatalyst for the green production of H-2 and their properties with respect to photocatalysis were elucidated for the first time. N- and B-rGOs were facilely prepared via the pyrolysis of graphene oxide with urea and boron anhydride as their respective dopant source. The pyrolysis temperature was varied (600-800 degrees C for N-rGO and 800-1000 degrees C for B-rGO) in order to modify dopant loading percentage (%) which was found to be influential to photocatalytic activity. N-rGO600 (8.26 N at%) and B-rGO1000 (3.59 B at%), which holds the highest at% from each of their party, exhibited the highest H-2 activity. Additionally, the effects of the nature of N and B bonding configuration in H-2 photoactivity were also examined. This study demonstrates the importance of dopant atoms in graphene, rendering doping as an effective strategy to bolster photocatalytic activity for standalone graphene derivative photo catalysts.