▎ 摘 要
In this paper, a new two-dimensional analytical model for our proposed InAs/Si based double-gate dual-metal tunnel field-effect transistor (DG-TFET) with graphene nano-ribbon is presented. Incorporating group III-V material in source - channel junction, which in turn forms heterojunction results better device performance. Moreover, thin graphene nano-ribbon placed over intrinsic channel can tune the energy gap to larger extent, which supports better band-to-band (B2B) tunneling in our model. Direct tunneling model is used for Indium Arsenide (InAs), since it is direct bandgap material. Obtained V(th)as 0.19 V, sub-threshold swing (SS) as 20.76 mV/decade and I-ON/I(OFF)ratio as 10(8)for the case of InAs/Si DG-TFET with graphene nano-ribbon shows an improvement of 48%, 36% and 10 decades respectively compared to conventional all-Si DG-TFET. Using 2-D TCAD numerical device simulator the proposed device model is designed and validated well with analytical data.