▎ 摘 要
This study investigated the mechanical properties and dry-sliding friction and wear behaviors of graphene-reinforced TiAl matrix composites in expectation of providing valuable information for the application of graphene. The results suggested that the incorporation of graphene apparently improved the microhardness, fracture toughness, and tribological properties of the composites. For the composite with 3 wt% graphene, the microhardness increased by 129%, the fracture toughness increased by 149%, the friction coefficient decreased by 37% and the wear rate decreased by 78%. Also, the microstructural analyses of the worn surfaces indicated that three types of graphene-rich films, with different percentages of coverage, were generated on the worn surfaces under various wear conditions. An evolution mechanism of the films as a function of wear conditions was proposed, and the corresponding variation of friction and wear behavior was also discussed.