▎ 摘 要
In the search of nanomaterials to be used in drug delivery applications, Density Functional Theory calculations were implemented to study the interaction between graphene (G) and hexagonal boron nitride nanosheet (hBNN) with octahedral B12N12 fullerenes. These B12N12 fullerenes were considered in two cases: pristine and the modified one with boron-boron, nitrogen-nitrogen (tetragon) and boron-boron boron (hexagon) homo-nuclear bonds. The whole systems were analyzed in the gas and aqueous phases. The results reveal for all these systems that the interaction is in the range of physisorption (E-ads = from -0.03 to -0.37 eV) for both phases, limiting its functions as a vehicle. However, for the nano-composite: B12N12 fullerene modified and hBNNs, the values of average chemical reactivity and HOMO-LUMO gap decreased whereas the polarity was improved, thereby this combination of quantum descriptors lead them to be considered as potential vehicle for drug delivery. (C) 2018 Elsevier Inc. All rights reserved.