▎ 摘 要
Selective oxidation of glycerol is a hot topic. Increased biodiesel production has led to glycerol oxidation over Au- and Pt-based catalysts being widely studied. However, Pt catalysts suffer from deactivation because of weak metal-support interactions. In this study, multi-walled carbon nanotube (MWCNTs)-pillared nitrogen-doped graphene (NG) was prepared by direct pyrolysis of melamine on MWCNTs, and the synthesized NG-MWCNT composite was used as the support for Pt. Characterization results showed that the surface area (173 m(2)/g) and pore volume of the NG-MWCNT composite were greater than those of bare MWCNTs and the separated melamine pyrolysis product (CN). Pt (1.4 +/- 0.4 nm) dispersion on the NG-MWCNTs was favorable and the Pt/NG-MWCNT catalyst was highly active and selective in the oxidation of glycerol to glyceric acid (GLYA) in base-free aqueous solution. For example, the conversion of glycerol reached 64.4% with a GLYA selectivity of 81.0%, whereas the conversions of glycerol over Pt/MWCNTs and Pt/CNx were 29.0% and 31.6%, respectively. The unique catalytic activity of the Pt/NG-MWCNTs is attributed to well-dispersed Pt clusters on the NG-MWCNTs and the electron-donating effect of the nitrogen dopant in the NG-MWCNTs. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.