• 文献标题:   A highly stable acetylcholinesterase biosensor based on chitosan-TiO(2)graphene nanocomposites for detection of organophosphate pesticides
  • 文献类型:   Article
  • 作  者:   CUI HF, WU WW, LI MM, SONG XJ, LV YX, ZHANG TT
  • 作者关键词:   acetylcholinesterase, organophosphorus pesticide, dichlorvo, biosensor, tio2 salgel, chitosan
  • 出版物名称:   BIOSENSORS BIOELECTRONICS
  • ISSN:   0956-5663 EI 1873-4235
  • 通讯作者地址:   Zhengzhou Univ
  • 被引频次:   58
  • DOI:   10.1016/j.bios.2017.07.068
  • 出版年:   2018

▎ 摘  要

A highly stable electrochemical acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs) was developed simply by adsorption of AChE on chitosan (CS), TiO2 sol-gel, and reduced graphene oxide (rGO) based multi-layered immobilization matrix (denoted as (CSTiO2)-Ti-@-CS/rGO). The biosensor fabrication conditions were optimized, and the fabrication process was probed and confirmed by scanning electron microscopy and electrochemical techniques. The matrix has a mesoporous nanostructure. Incorporation of CS and electrodeposition of a CS layer into/on the TiO2 sol-gel makes the gel become mechanically strong. The catalytic activity of the AChE immobilized (CSTiO2)-Ti-@-CS/rGO/glassy carbon electrode to acetylthiocholine is significantly higher than those missing any one of the component in the matrix. The detection linear range of the biosensor to dichlorvos, a model OP compound, is from 0.036 mu M (7.9 ppb) to 22.6 mu M, with a limit of detection of 29 nM (6.4 ppb) and a total detection time of about 25 min. The biosensor is very reproducibly and stable both in detection and in storage, and can accurately detect the dichlorvos levels in cabbage juice samples, providing an efficient platform for immobilization of AChE, and a promisingly applicable OPs biosensor with high reliability, simplicity, and rapidness.