• 文献标题:   The role of hydrogen bonding in interaction energy at the interface of conductive polymers and modified graphene-based nanosheets: A reactive molecular dynamics study
  • 文献类型:   Article
  • 作  者:   PISHEHVARZ G, ERFANNIYA H, ZAMINPAYMA E
  • 作者关键词:   reactive molecular dynamic, interaction energy, graphenebased polymer nanocomposite, hydrogen bonding
  • 出版物名称:   COMPUTATIONAL MATERIALS SCIENCE
  • ISSN:   0927-0256 EI 1879-0801
  • 通讯作者地址:   Univ Tabriz
  • 被引频次:   2
  • DOI:   10.1016/j.commatsci.2018.08.053
  • 出版年:   2018

▎ 摘  要

Interaction energy between conducive polymers and modified graphene-based nanosheets was evaluated using reactive force-field (ReaxFF) molecular dynamics (MD) with considering the molecular orientation of polymers with respect to contact surface. The studied systems consist of conducive polymers, e.g., poly(3-(4-n-octyl)-phenylthiophene) (POPT), poly(3-phenylhydrazone thiophene) (PPHT) as well as modified graphene-based nanosheets by hydroxyl, epoxy, carboxyl, methyl, and carbonyl functional groups. According to the MD results, the highest interaction energy was obtained at the interface of PPHT and carboxylated graphene due to forming hydrogen bonds. Also, PPHT polymer revealed more interaction with reduced graphene oxide (rGO) in comparison with POPT. The main sites of interaction and structural properties of polymers were studied by radial distribution function (RDF) and radius of gyration (R-g). The degree of reinforcement of polymers are in good agreement with experimental data. The obtained results can be used to produce more effective reinforced nanocomposites for solar cell applications.