• 文献标题:   Unravelling the last milliseconds of an individual graphene nanoplatelet before impact with a Pt surface by bipolar electrochemistry
  • 文献类型:   Article
  • 作  者:   DENG ZJ, RENAULT C
  • 作者关键词:  
  • 出版物名称:   CHEMICAL SCIENCE
  • ISSN:   2041-6520 EI 2041-6539
  • 通讯作者地址:  
  • 被引频次:   6
  • DOI:   10.1039/d1sc03646g EA AUG 2021
  • 出版年:   2021

▎ 摘  要

Contactless interactions of micro/nano-particles near electrochemically or chemically active interfaces are ubiquitous in chemistry and biochemistry. Forces arising from a convective field, an electric field or chemical gradients act on different scales ranging from few microns down to few nanometers making their study difficult. Here, we correlated optical microscopy and electrochemical measurements to track at the millisecond timescale the dynamics of individual two-dimensional particles, graphene nanoplatelets (GNPs), when approaching an electrified Pt micro-interface. Our original approach takes advantage of the bipolar feedback current recorded when a conducting particle approaches an electrified surface without electrical contact and numerical simulations to access the velocity of individual GNPs. We evidenced a strong deceleration of GNPs from few tens of mu m s(-1) down to few mu m s(-1) within the last mu m above the surface. This observation reveals the existence of strongly non-uniform forces between tens of and a thousand nanometers from the surface.