• 文献标题:   Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells
  • 文献类型:   Article
  • 作  者:   KIM JK, PARK MJ, KIM SJ, WANG DH, CHO SP, BAE S, PARK JH, HONG BH
  • 作者关键词:   graphene quantum dot, bulk heterojunction solar cell, light absorption, conductivity
  • 出版物名称:   ACS NANO
  • ISSN:   1936-0851 EI 1936-086X
  • 通讯作者地址:   Korea Inst Sci Technol
  • 被引频次:   107
  • DOI:   10.1021/nn402606v
  • 出版年:   2013

▎ 摘  要

Graphene quantum dots (GQDs) have been considered as a novel material because their electronic and optoelectronic properties can be tuned by controlling the size and the functional groups of GQDs. Here we report the synthesis of reduction-controlled GQDs and their application to bulk heterojunction (BHJ) solar cells with enhanced power conversion, efficiency (PCE). Three different types of GQDs-graphene oxide quantum dots (GOQDs), 5 h reduced GQDs, and 10 h reduced GQDs-were tested in BM solar cells, and the results indicate that GQDs play an important role in increasing optical absorptivity and charge carrier extraction of the BIB solar cells. The enhanced optical absorptivity by rich functional groups in GOQDs increases short-circuit current, while the improved conductivity of reduced GQDs leads to the increase of fill factors. Thus, the reduction level of GQDs needs to be intermediate to balance the absorptivity and conductivity. Indeed, the partially reduced GQDs yielded the outstandingly improved PCE of 7.60% in BM devices compared to a reference device without GQDs (6.70%).