• 文献标题:   Pulmonary hazard identifications of Graphene family nanomaterials: Adverse outcome pathways framework based on toxicity mechanisms
  • 文献类型:   Review
  • 作  者:   DING XM, PU YP, TANG M, ZHANG T
  • 作者关键词:   graphenefamily nanomaterial gfn, adverse outcome pathway aop, pulmonary toxicity, health risk assessment, nanotoxicology
  • 出版物名称:   SCIENCE OF THE TOTAL ENVIRONMENT
  • ISSN:   0048-9697 EI 1879-1026
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.scitotenv.2022.159329 EA OCT 2022
  • 出版年:   2023

▎ 摘  要

Graphene-family nanomaterials (GFNs) are revolutionary new nanomaterials that have attracted significant attention in the field of nanomaterials, but the ensuing problems lie in the potential threats to public health and the ecosystem caused by these nanomaterials. From the perspective of GFN-related health risk assessments, this study reviews the current status of GFN-induced pathological lung events with a focus on the damage caused to different biological moieties (molecular, cellular, tissue, and organ) and the mechanistic relationships between different toxic endpoints. These multiple sites of damage were matched with existing adverse outcome pathways (AOPs) in an online knowledge base to obtain available molecular initiation events (MIEs), key events (KEs), and adverse outcomes (AOs). Among them, the MIEs were discussed in combination with the structure-activity relationship due to the correlation between toxicity and physical and chemical properties of GFNs. Based on the collection of information regarding MIEs, Kes, and AOs in addition to upstream and downstream causal extrapolation, the AOP framework for GFN-induced pulmonary toxicity was developed, highlighting the possible mechanisms of GFN-induced lung damage. This review intended to combine AOP with classic toxicological methods with a view to rapidly and accurately establishing a nanotoxicology infrastructure so as to contribute to public health risk assessment strategies through iteration from and animal models up to the population level.