▎ 摘 要
We report a theoretical study of the local interface properties at a graphene-MoSe2 (G-MoSe2) in-plane lateral heterostructure. Using a combination of first-principles density functional theory (DFT) calculations and simulations of X-ray Absorption Near-Edge Structure (XANES) spectroscopy at the C K-edge, we examined different local interface arrangements. The simulated XANES signal from interface carbon atoms showed new features compared to the pristine graphene region, which provides a way of identifying different chemical environments and/or geometries of the local interface in the G-MoSe2 lateral hybrid system. Our results also revealed that the local electronic and magnetic properties are dependent on the interface atomic structure, where metallic, semiconductor or half-metallic character was achieved at the G-MoSe2 interface. These findings indicate the great potential of 2D lateral heterojunctions for nanoelectronic and spintronic applications.