• 文献标题:   Plasmonic-Enhanced Organic Light-Emitting Diodes Based on a Graphene Oxide/Au Nanoparticles Composite Hole Injection Layer
  • 文献类型:   Article
  • 作  者:   FENG JH, SUN DW, MEI SJ, SHI WX, MEI F, ZHOU YM, XU JX, JIANG Y, WU LZ
  • 作者关键词:   organic lightemitting diodes oled, surface plasmon resonance spr, graphene oxide go, au nanoparticles au nps, hole transport layer htl
  • 出版物名称:   FRONTIERS IN MATERIALS
  • ISSN:   2296-8016
  • 通讯作者地址:   Hubei Univ Technol
  • 被引频次:   1
  • DOI:   10.3389/fmats.2018.00075
  • 出版年:   2018

▎ 摘  要

Organic light-emitting diodes (OLEDs) have drawn a great deal of attention due to their broad applications in lighting and displaying. With the development of nanotechnology, surface plasmas have been widely used in photonics, microscopes, solar cells and biosensors. In this paper, by inserting graphene oxide (GO), Au nanoparticles (Au NPs) and GO/Au NP composite structures between the hole transport layer (NPB) and indium tin oxide (ITO) anode, respectively, the electroluminescent performance of Alq(3)-based OLEDs was significantly enhanced. Compared to the reference devices, the devices with the composite inserting layer containing 10% GO/Au NP doping have the best electroluminescent performance, which improved 47.9% in maximum luminance, 49.2% in maximum current efficiency and 45.3% in maximum external quantum efficiency (EQE). Such substantial enhancement of photoelectric performance can be attributed to the combined effects of LSPR coupling and the better hole transport property by introducing Au NPs and a graphene oxide-doped layer.