• 文献标题:   A silicon/carbon/reduced-graphene composite of honeycomb structure for high-performance lithium-ion batteries
  • 文献类型:   Article
  • 作  者:   ZHANG Q, YANG YY, WANG D, ZHANG R, FAN HQ, FENG L, WEN GW, QIN LC
  • 作者关键词:   si, c, rgo composite, reduced graphene, chemical bond, lithiumion battery
  • 出版物名称:   JOURNAL OF ALLOYS COMPOUNDS
  • ISSN:   0925-8388 EI 1873-4669
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1016/j.jallcom.2023.169185 EA FEB 2023
  • 出版年:   2023

▎ 摘  要

The high theoretical capacity of silicon (Si) makes it an attractive anode for lithium-ion batteries (LIBs). However, the poor cycle performance due to the volumetric expansion of Si during the charging-discharging process hinders its practical applications. A composite of graphene and silicon can buffer effectively the volumetric expansion of Si during the charging and discharging process of the battery. Herewith we de-scribe a honeycomb structure constructed with Si nanoparticles (NPs), acetylene black (ACET), and reduced graphene (rGO). In this 3D structure, ACET and Si formed a Si/C composite by mechanical ball milling and it was then encapsulated in a graphene oxide (GO) suspension. After reduction with hydrazine hydrate (N2H4Greek ano teleiaH2O) to create rGO, a stable composite Si/C/rGO was obtained. As an anode for LIB, the Si/C/rGO composite exhibited excellent cycle and rate performance. Firstly, the initial coulombic efficiency (ICE) of the battery is very high, exceeding 85%. Secondly, the reversible capacity was retained at 1004 mAh/g after 270 cycles at a current density of 1 A/g. The composite maintained good cycling stability even at current densities of 2 and 3 A/g. Finally, in the rate cycle test, the reversible capacity was up to 450 mAh/g at 5 A/g. (c) 2023 Elsevier B.V. All rights reserved.