▎ 摘 要
Nanostructured carbon aerogels with outstanding physicochemical properties have exhibited great application potentials in widespread fields and therefore attracted extensive attentions recently. It is still a challenge so far to develop flexible and economical routes to fabricate high-performance nanocarbon aerogels, preferably based on renewable resources. Here, ultralight and multifunctional reduced graphene oxide/carbon nanofiber (RGO/CNF) aerogels are fabricated from graphene oxide and low-cost, industrially produced bacterial cellulose by a three-step process of freeze-casting, freeze-drying, and pyrolysis. The prepared RGO/CNF aerogel possesses a very low apparent density in the range of 0.7-10.2 mg cm(-3) and a high porosity up to 99%, as well as a mechanically robust and electrically conductive 3D network structure, which makes it to be an excellent candidate as absorber for oil clean-up and an ideal platform for constructing flexible and stretchable conductors.