▎ 摘 要
Behaving as structural protectors and electronic modulators, catalyst supports such as graphene derivatives are generally constructed by covalent bonds. Here, hydrogen-bonded ultrathin nanosheets are reported as a new type of catalyst support. Melamine (M) and cyanuric acid (CA) molecules self-assemble to form the graphite-like hydrogen-bonded co-crystal M-CA, which can be easily exfoliated by ultrasonic treatment to yield ultrathin nanosheets with thickness of approximate to 1.6 nm and high stability at pH = 0. The dynamic nanosheets form adaptive defects/pores in the synthetic process of CoP nanoparticles, giving embedded composite with high hydrogen evolution activity (overpotential of 66 mV at 10 mA cm(-2)) and stability. Computational calculations, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy unveil the electron modulation effects of the nanosheets. This pseudo-porous catalyst support also can be applied to other metal phosphides.