▎ 摘 要
Single graphene sheets, a few graphene layers, and bulk graphite, obtained via both micromechanical cleavage of highly oriented pyrolytic graphite and carbon vapor deposition methods, were deposited on a thin glass substrate without the use of any chemical treatment. Micro-Raman spectroscopy, tip-enhanced Raman spectroscopy (TERS), and tip-enhanced Raman spectroscopy mapping (TERM) were used for characterization of the graphene layers. In particular, TERM allows for the investigation of individual graphene sheets with high Raman signal enhancement factors and allows for imaging of local defects with nanometer resolution. Enhancement up to 560% of the graphene Raman band intensity was obtained using TERS. TERM (with resolution better than 100 nm) showed an increase in the number of structural defects (D band) on the edges of both graphene and graphite regions.