• 文献标题:   Three-Dimensional Nitrogen-Doped Reduced Graphene Oxide-Carbon Nanotubes Architecture Supporting Ultrafine Palladium Nanoparticles for Highly Efficient Methanol Electrooxidation
  • 文献类型:   Article
  • 作  者:   SONG HJ, YANG LM, TANG YH, YAN DF, LIU CB, LUO SL
  • 作者关键词:   carbon nanotube, electrocatalysi, electrodeposition, palladium, reduced graphene oxide
  • 出版物名称:   CHEMISTRYA EUROPEAN JOURNAL
  • ISSN:   0947-6539 EI 1521-3765
  • 通讯作者地址:   Hunan Univ
  • 被引频次:   25
  • DOI:   10.1002/chem.201502804
  • 出版年:   2015

▎ 摘  要

A three-dimensional (3D) nitrogen-doped reduced graphene oxide (rGO)-carbon nanotubes (CNTs) architecture supporting ultrafine Pd nanoparticles is prepared and used as a highly efficient electrocatalyst. Graphene oxide (GO) is first used as a surfactant to disperse pristine CNTs for electrochemical preparation of 3D rGO@CNTs, and subsequently one-step electrodeposition of the stable colloidal GO-CNTs solution containing Na2PdCl4 affords rGO@CNTs-supported Pd nanoparticles. Further thermal treatment of the Pd/rGO@CNTs hybrid with ammonia achieves not only in situ nitrogen-doping of the rGO@CNTs support but also extraordinary size decrease of the Pd nanoparticles to below 2.0nm. The resulting catalyst is characterized by scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Catalyst performance for the methanol oxidation reaction is tested through cyclic voltammetry and chronoamperometry techniques, which shows exceedingly high mass activity and superior durability.