▎ 摘 要
By carrying out the Hall measurements under a large bias current, we have directly observed the spatial variation of the carrier density in graphene. This carrier density variation is found to depend on the bias direction; hence it cannot be caused by the heating effect, which should be independent of the bias current direction. A simple back-gate tuning model, involving a self-consistent calculation on longitudinal transport coupled with carrier density variation, is shown to explain the experimental results very well. Various implications of this phenomenon, including the shift of charge neutrality point under a large bias, are investigated and discussed.