• 文献标题:   Modeling of cancer photothermal therapy using near-infrared radiation and functionalized graphene nanosheets
  • 文献类型:   Article
  • 作  者:   WANG YJ, LENG S, HUANG JG, SHU MY, PAPAVASSILIOU DV
  • 作者关键词:   cancer photothermal therapy, graphene nanosheet, interfacial thermal resistance, modeling, nearinfrared radiation
  • 出版物名称:   INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING
  • ISSN:   2040-7939 EI 2040-7947
  • 通讯作者地址:   Univ Oklahoma
  • 被引频次:   2
  • DOI:   10.1002/cnm.3275 EA NOV 2019
  • 出版年:   2020

▎ 摘  要

Photothermal therapy using near-infrared radiation and local heating agents can induce selective tumor ablation with limited harm to the surrounding normal tissue. Graphene sheets are promising local heating agents because of their strong absorbance of near-infrared radiation. Experimental studies have been conducted to study the heating effect of graphene in photothermal therapy, yet few efforts have been devoted to the quantitative understanding of energy conversion and transport in such systems. Herein, a computational study of cancer photothermal therapy using near-infrared radiation and graphene is presented using a Monte Carlo approach. A three-dimensional model was built with a cancer cell inside a cube of healthy tissue. Functionalized graphene nanosheets were randomly distributed on the surface of the cancer cell. The effects of the concentration and morphology of the graphene nanosheets on the thermal behavior of the system were quantitatively investigated. The interfacial thermal resistance around the graphene sheets, which affects the transfer of heat in the nanoscale, was also varied to probe its effect on the temperature increase of the cancer cell and the healthy tissue. The results of this study could guide researchers to optimize photothermal therapy with graphene, while the modeling approach has the potential to be applied for investigating alternative treatment plans.