▎ 摘 要
The dynamic behavior of the interface between few layer graphene (FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy (TEM) method. High-resolution and real-time observations show the tungsten tip 'swallow' carbon atoms of the FLG and 'spit' graphite shells at its surface. The tip was carbonized to tungsten carbide (WC, W2C and WCx) after this process. A carbon diffusion mechanism has been proposed based on the diffusion of carbon atoms through the tungsten tip and separation from the surface of the tip. After Joule heating, the initial FLG-metal mechanical contact was transformed to FLG-WCx-W contact, which results in significant improvement on electrical conductivity at the interface.