• 文献标题:   Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame
  • 文献类型:   Article
  • 作  者:   YIN B, WEN YW, HONG T, XIE ZS, YUAN GL, JI QM, JIA HB
  • 作者关键词:   wearable strain sensor, reduced graphene oxide woven fabric, flame, stretchability, sensitivity
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Nanjing Univ Sci Technol
  • 被引频次:   41
  • DOI:   10.1021/acsami.7b09652
  • 出版年:   2017

▎ 摘  要

The recent booming development of wearable electronics urgently calls for high-performance flexible strain sensors. To date, it is still a challenge to manufacture flexible strain sensors with superb sensitivity and a large workable strain range simultaneously. Herein, a facile, quick, cost-effective, and scalable strategy is adopted to fabricate novel strain sensors based on reduced graphene oxide woven fabrics (GWF). By pyrolyzing commercial cotton bandages coated with graphene oxide (GO) sheets in an ethanol flame, the reduction of. GO and the pyrolysis of the cotton bandage template can be synchronously completed in tens of seconds. Due to the unique hierarchical structure of the GWF, the strain sensor based on GWF exhibits large stretchability (57% strain) with high sensitivity, inconspicuous drift, and durability. The GWF strain sensor is successfully used to monitor full-range (both subtle and vigorous) human activities or physical vibrational signals of the local environment. The present work offers an effective strategy to rapidly prepare low-cost flexible strain sensors with potential applications in the fields of wearable electronics, artificial intelligence devices, and so forth.