• 文献标题:   Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors
  • 文献类型:   Article
  • 作  者:   WU ZS, WANG DW, REN W, ZHAO J, ZHOU G, LI F, CHENG HM
  • 作者关键词:  
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   850
  • DOI:   10.1002/adfm.201001054
  • 出版年:   2010

▎ 摘  要

Hydrous ruthenium oxide (RuO2)/graphene sheet composites (ROGSCs) with different loadings of Ru are prepared by combining sol-gel and low-temperature annealing processes. The graphene sheets (GSs) are well-separated by fine RuO2 particles (5-20 nm) and, simultaneously, the RuO2 particles are anchored by the richly oxygen-containing functional groups of reduced, chemically exfoliated GSs onto their surface. Benefits from the combined advantages of GSs and RuO2 in such a unique structure are that the ROGSC-based supercapacitors exhibit high specific capacitance (similar to 570 F g(-1) for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability (similar to 97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg(-1)) at low operation rate (100 mA g(-1)) or high power density (10000 W kg(-1)) at a reasonable energy density (4.3 Wh kg(-1)). Interestingly, the total specific capacitance of ROGSCs is higher than the sum of specific capacitances of pure GSs and pure RuO2 in their relative ratios, which is indicative of a positive synergistic effect of GSs and RuO2 on the improvement of electrochemical performance. These findings demonstrate the importance and great potential of graphene-based composites in the development of high-performance energy-storage systems.