• 文献标题:   Efficient removal of trichloroethene in oxidative environment by anchoring nano FeS on reduced graphene oxide supported nZVI catalyst: The role of FeS on oxidant decomposition and iron leakage
  • 文献类型:   Article
  • 作  者:   SUN Y, GU MB, LYU SG, BRUSSEAU ML, LI M, LYU YC, XUE YF, QIU ZF, SUI Q
  • 作者关键词:   fes@nzvirgo, oxidation, catalysi, trichloroethene, groundwater remediation
  • 出版物名称:   JOURNAL OF HAZARDOUS MATERIALS
  • ISSN:   0304-3894 EI 1873-3336
  • 通讯作者地址:   East China Univ Sci Technol
  • 被引频次:   0
  • DOI:   10.1016/j.jhazmat.2020.122328
  • 出版年:   2020

▎ 摘  要

The performance of trichloroethene (TCE) removal was initially investigated in sodium persulfate (SPS) or potassium monopersulfate triple salt (PMS) oxidative environment by reduced graphene oxide (rGO) supported nZVI (nZVI-rGO) catalyst and further the role of sulphur by anchoring nano FeS on nZVI-rGO (FeS@nZVI-rGO) was evaluated. The high usage of oxidants and stability of FeS@nZVI-rGO catalyst were significantly improved due to the insoluble nature of this innovative catalyst by involvement of nano FeS which limited the rapid iron loss caused by the corrosion of active sites and mitigated rapid oxidants decomposition in FeS@nZVI-rGO/SPS and FeS@nZVI-rGO/PMS systems. The tests for target contaminant removal showed that over 95 % TCE could be removed at 100 mg L-1 FeS@nZVI-rGO and 1.2 mM SPS or 0.3 mM PMS dosages, in which over 85 % TCE could be dechlorinated. The reactive oxygen radicals (ROSs) generation mechanisms and their contribution to TCE removal were investigated through radical scavenge tests in both systems, indicating that both HO center dot and SO4-center dot were the major ROSs rather than O-2(-center dot). In conclusion, this study revealed the well function and fundamental mechanism of this innovative catalyst by anchoring nano FeS and worth of further demonstration of this technique in TCE contaminated groundwater remediation application.