▎ 摘 要
Nitrogen-doped graphene aerogels with three-dimensional network structures are fabricated using hydrothermal method which includes the reduction of graphene oxide by organic amine and self-assembly of reduced graphene oxide. The effect of amine-containing compounds including aniline, 2-aminoethanol, ethylenediamine, melamine and chitosan on the assembly of nitrogen-doped graphene aerogel is investigated. The microstructure and chemical composition of nitrogen-doped graphene aerogels are characterized. The results reveal that nitrogen-doped graphene aerogel prepared using aniline as nitrogen source possesses a large specific surface area, high nitrogen content, good mechanical strength and excellent electrical conductivity. Based on these features, the as-prepared nitrogen-doped graphene aerogel shows high performance in electrochemical detection of dopamine in the presence of uric acid and ascorbic acid. Given the facile and scalable processability of aerogels, the proposed nitrogen-doped graphene aerogels are expected to have potential applications in sensors and other related devices.