• 文献标题:   Beginnings of exciton condensation in coronene analog of graphene double layer
  • 文献类型:   Article
  • 作  者:   SAGER LM, SCHOUTEN AO, MAZZIOTTI DA
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF CHEMICAL PHYSICS
  • ISSN:   0021-9606 EI 1089-7690
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1063/5.0084564
  • 出版年:   2022

▎ 摘  要

Exciton condensation, a Bose-Einstein condensation of excitons into a single quantum state, has recently been achieved in low-dimensional materials including twin layers of graphene and van der Waals heterostructures. Here, we computationally examine the beginnings of exciton condensation in a double layer composed of coronene, a seven-benzene-ring patch of graphene. As a function of interlayer separation, we compute the exciton population in a single coherent quantum state, showing that the population peaks around 1.8 at distances near 2 angstrom. Visualization reveals interlayer excitons at the separation distance of the condensate. We determine the exciton population as a function of the twist angle between two coronene layers to reveal the magic angles at which the condensation peaks. As with previous recent calculations showing some exciton condensation in hexacene double layers and benzene stacks, the present two-electron reduced-density-matrix calculations with coronene provide computational evidence for the ability to realize exciton condensation in molecular-scale analogs of extended systems such as the graphene double layer.