▎ 摘 要
A novel type of spaser with the net amplification of surface plasmons (SPs) in a doped graphene nanoribbon is proposed. The plasmons in the THz region can be generated in a doped graphene nanoribbon due to nonradiative excitation by emitters like two level quantum dots located along a graphene nanoribbon. The minimal population inversion per unit area, needed for the net amplification of SPs in a doped graphene nanoribbon, is obtained. The dependence of the minimal population inversion on the surface plasmon wave vector, graphene nanoribbon width, doping, and damping parameters necessary for the amplification of surface plasmons in the armchair graphene nanoribbon is studied.