• 文献标题:   Competing Channels for Hot-Electron Cooling in Graphene
  • 文献类型:   Article
  • 作  者:   MA Q, GABOR NM, ANDERSEN TI, NAIR NL, WATANABE K, TANIGUCHI T, JARILLOHERRERO P
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW LETTERS
  • ISSN:   0031-9007 EI 1079-7114
  • 通讯作者地址:   MIT
  • 被引频次:   34
  • DOI:   10.1103/PhysRevLett.112.247401
  • 出版年:   2014

▎ 摘  要

We report on temperature-dependent photocurrent measurements of high-quality dual-gated monolayer graphene p-n junction devices. A photothermoelectric effect governs the photocurrent response in our devices, allowing us to track the hot-electron temperature and probe hot-electron cooling channels over a wide temperature range (4 to 300 K). At high temperatures (T > T*), we found that both the peak photocurrent and the hot spot size decreased with temperature, while at low temperatures (T < T*), we found the opposite, namely that the peak photocurrent and the hot spot size increased with temperature. This nonmonotonic temperature dependence can be understood as resulting from the competition between two hot-electron cooling pathways: (a) (intrinsic) momentum-conserving normal collisions that dominates at low temperatures and (b) (extrinsic) disorder-assisted supercollisions that dominates at high temperatures. Gate control in our high-quality samples allows us to resolve the two processes in the same device for the first time. The peak temperature T* depends on carrier density and disorder concentration, thus allowing for an unprecedented way of controlling graphene's photoresponse.