▎ 摘 要
In this work, reduced graphene oxide-CoSe (rGO-CoSe) nanocomposites were synthesized with chemical solution reaction and characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, UV-vis spectroscopy, and photodegradation of toxicity malachite green in the water. The effects of rGO/CoSe ratio, initial solution pH, and H2O2 concentration on the photodegradation effeciency were studied. The nanocomposites showed excellent sunlight-excited photocatalytic activity to toxicity malachite green in the water. The photodegradation rate increased with increasing rGO/CoSe ratio and initial solution pH. Significantly, remarkable Fenton-like photocatalytic activity enhanced with increasing rGO/CoSe ratio and H2O2 concentration was observed. The photodegradation rate constant, k obs, was determined under pseudo-first order conditions. The interface-induced mechanism on enhanced photocatalysis with rGO/CoSe was suggested.