▎ 摘 要
Graphene doped with nitrogen exhibits unique properties different than perfect graphene. The temperature distribution in nitrogen-doped graphene (N-graphene) and in the graphene with grain boundary is investigated using molecular dynamics simulations. The temperature distribution in nitrogen-doped graphene nanoribbon, containing two types of grain boundaries, was found to be sensitive to the number of dopants and grain boundary. We also found that there is a remarkable temperature gap in the temperature profile of N-graphene nanoribbon-containing a grain boundary. For any doping ratio N/C we found that the nitrogen atoms enhance roughness of N-graphene and decrease thermal conductivity. (C) 2017 Elsevier Inc. All rights reserved.