• 文献标题:   The structure of graphene on graphene/C-60/Cu interfaces: a molecular dynamics study
  • 文献类型:   Article
  • 作  者:   FONSECA AF, DANTAS SO, GALVAO DS, ZHANG DF, SINNOTT SB
  • 作者关键词:   graphenemetal, graphenecooper, intercalated c60, molecular dynamic
  • 出版物名称:   NANOTECHNOLOGY
  • ISSN:   0957-4484 EI 1361-6528
  • 通讯作者地址:   Univ Estadual Campinas
  • 被引频次:   0
  • DOI:   10.1088/1361-6528/ab4431
  • 出版年:   2019

▎ 摘  要

Two experimental studies reported the spontaneous formation of amorphous and crystalline structures of C-60 molecules intercalated between graphene and a surface. The findings observed included interesting phenomena ranging from reaction between fullerene C(60)s ('C(60)s' stands for plural of C-60) under graphene to graphene sheets sagging between C(60)s and control of strain in these sheets. Motivated by this work, we performed fully atomistic reactive molecular dynamics simulations to investigate the formation and thermal stability of graphene sheet wrinkles as well as graphene attachment to and detachment from a surface when the sheet is laid over a previously distributed array of C-60 molecules on a copper surface at different temperatures. As graphene compresses the C(60)s against the surface, and graphene attachment to the surface in between C(60)s depends on the height of the wrinkles in the graphene sheet, configurations with both frozen and non-frozen fullerenes were investigated in the simulations in order to examine the experimental result of stable, sagged graphene sheets when the distance between C(60)s is about 4 nm and the height of the wrinkles in the sheet is about 0.8 nm. Below a distance of 4 nm between fullerenes, the graphene is predicted to become locally suspended and less strained. The simulations predict that this happens when the fullerenes can deform under the compressive action of the graphene sheet. If the fullerenes are kept frozen, spontaneous 'blanketing' of graphene is predicted only when the distance between neighbouring C(60)s is equal to or great than about 7 nm. These predictions agree with a mechanical model relating the rigidity of a graphene sheet to the energy of graphene-surface adhesion. This work further reveals the structure of intercalated molecules and the role of stability and sheet wrinkling on the preferred configuration of graphene. This study thus might assist in the development of two-dimensional confined nanoreactors for chemical reactions.