▎ 摘 要
Fast humidity sensors are of interest due to their potential application in new sensing technologies such as wearable personal healthcare and environment sensing devices. However, the realization of rapid response/recovery humidity sensors remains challenging primarily due to the sluggish adsorption/desorption of water molecules, which particularly impacts the response/recovery times. Moreover, another key factor for fast humidity sensing, namely the attainment of equal response and recovery times, has often been neglected. Herein, the layer-by-layer (LbL) assembly of a reduced graphene oxide (rGO)/polyelectrolyte is demonstrated for application in fast humidity sensors. The resulting sensors exhibit fast response and recovery times of 0.75 and 0.85 s (corresponding to times per RH range of 0.24 and 0.27 s RH-1, respectively), providing a difference of only 0.1 s (corresponding to 0.03 s RH-1). This performance exceeds that of the majority of previously reported graphene oxide (GO)- or rGO-based humidity sensors. In addition, the polyelectrolyte deposition time is shown to be key to controlling the humidity sensing kinetics. The as-developed rapid sensing system is expected to provide useful guidance for the tailorable design of fast humidity sensors.