• 文献标题:   Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold
  • 文献类型:   Article
  • 作  者:   YANG K, HUANG XY, FANG LJ, HE JL, JIANG PK
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Shanghai Jiao Tong Univ
  • 被引频次:   99
  • DOI:   10.1039/c4nr03957b
  • 出版年:   2014

▎ 摘  要

Flexible nanodielectric materials with high dielectric constant and low dielectric loss have huge potential applications in the modern electronic and electric industry. Graphene sheets (GS) and reduced-graphene oxide (RGO) are promising fillers for preparing flexible polymer-based nanodielectric materials because of their unique two-dimensional structure and excellent electrical and mechanical properties. However, the easy aggregation of GS/RGO significantly limits the potential of graphene in enhancing the dielectric constant of polymer composites. In addition, the poor filler/matrix nanoscale interfacial adhesion also causes difficulties in suppressing the dielectric loss of the composites. In this work, using a facile and environmentally friendly approach, polydopamine coated RGO (PDA-RGO) and fluoro-polymer functionalized RGO (PF-PDA-RGO) were prepared. Compared with the RGO prepared by the conventional methods [i.e. hydrazine reduced-graphene oxide (H-RGO)] and PDA-RGO, the resulting PF-PDA-RGO nanosheets exhibit excellent dispersion in the ferroelectric polymer matrix [i.e. poly(vinylidene fluoride-co-hexafluoro propylene), P(VDF-HFP)] and strong interfacial adhesion with the matrix, leading to a low percolation threshold (f(c) = 1.06 vol%) and excellent flexibility for the corresponding nanocomposites. Among the three nanocomposites, the P(VDF-HFP)/PF-PDA-RGO nanocomposites exhibited the optimum performance (i.e. simultaneously having high dielectric constant and low dielectric loss). For instance, at 1000 Hz, the P(VDF-HFP) nanocomposite sample with 1.0 vol% PF-PDA-RGO has a dielectric constant of 107.9 and a dielectric loss of 0.070, showing good potential for dielectric applications. Our strategy provides a new pathway to prepare high performance flexible nanodielectric materials.