• 文献标题:   High Sensitivity Graphene Field Effect Transistor-Based Detection of DNA Amplification
  • 文献类型:   Article
  • 作  者:   GANGULI A, FARAMARZI V, MOSTAFA A, HWANG MT, YOU S, BASHIR R
  • 作者关键词:   biosensor, crumpled graphene, graphene field effect transistor, loopmediated isothermal amplification, zeptomolar sensitivity
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X EI 1616-3028
  • 通讯作者地址:   Univ Illinois
  • 被引频次:   0
  • DOI:   10.1002/adfm.202001031 EA MAY 2020
  • 出版年:   2020

▎ 摘  要

Enzymatic DNA amplification-based approaches involving intercalating DNA-binding fluorescent dyes and expensive optical detectors are the gold standard for nucleic acid detection. As components of a simplified and miniaturized system, conventional silicon-based ion sensitive field effect transistors (ISFETs) that measure a decrease in pH due to the generation of pyrophosphates during DNA amplification have been previously reported. In this article, Bst polymerase in a loop-mediated isothermal amplification (LAMP) reaction combined with target-specific primers and crumpled graphene field effect transistors (gFETs) to electrically detect amplification by sensing the reduction in primers is used. Graphene is known to adsorb single-stranded DNA due to noncovalent pi-pi bonds, but not double-stranded DNA. This approach does not require any surface functionalization and allows the detection of primer concentrations at the endpoint of reactions. As recently demonstrated, the crumpled gFET over the conventional flat gFET sensors due to their superior sensitivity is chosen. The endpoint of amplification reaction with starting concentrations down to 8 x 10(-21) m in 90 min including the time of amplification and detection is detected. With its high sensitivity and small footprint, this platform will help bring complex lab-based diagnostic and genotyping amplification assays to the point-of-care.