• 文献标题:   Freestanding Graphene Paper Supported Three-Dimensional Porous Graphene-Polyaniline Nanoconnposite Synthesized by Inkjet Printing and in Flexible All-Solid-State Supercapacitor
  • 文献类型:   Article
  • 作  者:   CHI K, ZHANG ZY, XI JB, HUANG YA, XIAO F, WANG S, LIU YQ
  • 作者关键词:   freestanding graphene paper, threedimensional porous graphenepolyaniline nanocomposite, full inkjet printing synthesi, flexible electrode, allsolidstate supercapacitor
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Huazhong Univ Sci Technol
  • 被引频次:   182
  • DOI:   10.1021/am504539k
  • 出版年:   2014

▎ 摘  要

Freestanding paper-like electrode materials have trigged significant research interest for their practical application in flexible and lightweight energy storage devices. In this work, we reported a new type of flexible nanohybrid paper electrode based on full inkjet printing synthesis of a freestanding graphene paper (GP) supported three-dimensional (3D) porous graphene hydrogel (GH)-polyaniline (PANI) nanocomposite, and explored its practical application in flexible all-solid-state supercapacitor (SC). The utilization of 3D porous GH scaffold to load nanostructured PANI dramatically enhances the electrical conductivity, the specific capacitance and the cycle stability of the GH-PANI nanocomposite. Additionally, GP can intimately interact with GH-PANI through pi-pi stacking to form a unique freestanding GP supported GH-PANI nanocomposite (GH-PANI/GP) with distinguishing mechanical, electrochemical and capacitive properties. These exceptional attributes, coupled with the merits of full inkjet printing strategy, lead to the formation of a high-performance binder-free paper electrode for flexible and lightweight SC application. The flexible all-solid-state symmetric SC based on GH-PANI/GP electrode and gel electrolyte exhibits remarkable mechanical flexibility, high cycling performance and acceptable energy density of 24.02 Wh kg(-1) at a power density of 400.33 W kg(-1). More importantly, the proposed simple and scale-up full inkjet printing procedure for the preparation of freestanding GP supported 3D porous GH-PANI nanocomposite is a modular approach to fabricate other graphene-based nanohybrid papers with tailorable properties and optimal components.