▎ 摘 要
Thermoelectric power (TEP) is measured in bilayer graphene for various temperatures and charge-carrier densities. At low temperatures, measured TEP well follows the semiclassical Mott formula with a hyperbolic dispersion relation. TEP for a high carrier density shows a linear temperature dependence, which demonstrates a weak electron-phonon interaction in the bilayer graphene. For a low carrier density, a deviation from the Mott relation is observed at high temperatures and is attributed to the low Fermi temperature in the bilayer graphene. Oscillating TEP and the Nernst effect for varying carrier density, observed in a high magnetic field, are qualitatively explained by the two dimensionality of the system.