▎ 摘 要
Field emission properties of zigzag graphene nanoribbons terminated with C-O-C ether groups (including cyclic and alternative ether groups at edge, denoted as ZGNR-CE and ZGNR-AE) are studied by adopting a self-consistent method based on density functional theory calculation. The results show that the field emissions of these two nanoribbons are dominated by states around Brillouin zone center and close to Fermi level. Because of lower work function, the ZGNR-CE can produce much stronger emission current than reconstructed zigzag graphene nanoribbon. The ZGNR-AE has nearly completely spin-polarized emission current, although its emission current is not strong enough. It is also found that under the lower E-field, the uniaxial strain can effectively modulate their emission currents but the spin polarization of ZGNR-AE keeps unchanged with the varied strain. The underlying mechanisms are revealed by combining the analyses of their work functions and band structures with edge dipole model.