▎ 摘 要
Controlling the wettability of graphene and its derivatives is critical for broader applications. However, the dynamic dewetting performance of graphene is usually overlooked. Currently, superhydrophobic graphene with an anisotropic wettability is rare. Inspired by natural reed leaves, we report an ingenious fabrication process combining photolithography and laser holography technologies to create biomimetic graphene surfaces that demonstrate anisotropic wettability along two directions of grooved hierarchical structures, which are similar to reed leaf veins. Microgrooved structures with a period of 200 mu m were fabricated via photolithography to endow the substrate with an obvious anisotropic wettability. Two-beam laser interference treatments of the graphene oxide (GO) film on the grooved substrate removed most of the hydrophilic oxygen-containing groups on the GO sheets and increased the surface roughness by introducing additional hierarchical micro-nanostructures. The combined effects endowed the resultant graphene films with a unique anisotropic superhydrophobicity similar to that of reed leaves. Superhydrophobic graphene surfaces with anisotropic antiwetting behavior might allow further innovations based on graphene in the fields of bionics and electronics.