▎ 摘 要
Electrode materials for supercapacitors have been one of the crucial factors for the successful design of a renewable energy storage device. In this work, we present a bottom-up approach for the large-scale synthesis of three ternary hybrid aerogel nanocomposites, namely CMGA-1, CMGA-2 and CMGA-3, via the facile self-assembly of reduced graphene oxide (rGO), molybdenum disulfide (MoS2) and polymeric carbon nitride nanosheets derived from urea (TE_UCN). The three composites differ from each other only in the content of TE_UCN, with TE_UCN wt% of 33%, 60% and 71.4%, respectively, for CMGA-1, CMGA-2 and CMGA-3. All three composites possess a large surface area with a hierarchical porous structure. The influence of the wt% of TE_UCN in these composites on the electrochemical performance of the electrode was investigated using charge-discharge curves. When used as the electrode for supercapacitors, the nanocomposites exhibit pseudocapacitive behavior in NaCl solution. Comparing the three nanocomposites investigated here, CMGA-3 showed the best electrochemical performance, with a specific capacitance of 467 F g(-1) and the ability to retain up to 80.4% of this capacitance even after 2000 cycles, demonstrating good stability and improved cyclic performance. The excellent supercapacitance of CMGA-3 is due to its high surface area (Brunauer-Emmett-Teller surface area = 432.3 m(2) g(-1)) and low equivalent series resistance of 3.24 omega.