▎ 摘 要
In this work, by exploiting the lubricity and barrier effect of graphene and the hydrophobic polymer (polyvinylidene fluoride, PVDF), a superhydrophobic graphene/PVDF composite coating (G/PVDF) with contact angle of approximately 153.3 degrees was prepared on microarc oxidized aluminum alloy to protect the substrate from friction and corrosion. The G/PVDF coating was strongly bonded with the microarc oxidization (MAO) layer on the aluminum alloy by the ionic interactions between graphene and the cations of polyelectrolyte, and hydrophobic interactions between graphene and PVDF. Results show that the friction coefficient of the G/PVDF coating was lower than that of the MAO-only ceramic coating, with the lowest friction coefficient for the G/PVDF3 film of about 0.3, which demonstrates better antiwear property compared with the MAO-only ceramic coating. In addition, the superhydrophobic coating exhibited enhanced anticorrosion properties compared with the MAO-only ceramic layer, which is attributed to the combined effect of graphene and the superhydrophobicity of the surface.