• 文献标题:   Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene
  • 文献类型:   Article
  • 作  者:   KAPETANAKIS MD, ZHOU W, OXLEY MP, LEE J, PRANGE MP, PENNYCOOK SJ, IDROBO JC, PANTELIDES ST
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Vanderbilt Univ
  • 被引频次:   14
  • DOI:   10.1103/PhysRevB.92.125147
  • 出版年:   2015

▎ 摘  要

Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. Though they remain a powerful tool for probing the electronic properties of nanostructures, they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with a theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory-based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.