• 文献标题:   High-Efficiency Plasmon-Enhanced and Graphene-Supported Semiconductor/Metal Core-Satellite Hetero-Nanocrystal Photocatalysts for Visible-Light Dye Photodegradation and H-2 Production from Water
  • 文献类型:   Article
  • 作  者:   ZHANG J, WANG P, SUN J, JIN YD
  • 作者关键词:   semiconductor nanocrystal, plasmon enhancement, graphene, photocatalysi, h2 generation
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   19
  • DOI:   10.1021/am505371g
  • 出版年:   2014

▎ 摘  要

Solar-driven photocatalytic process based on electron-hole pair production in semiconductors is a long sought-after solution to a green and renewable energy and has attracted a renaissance of interest recently. The relatively low photocatalytic efficiency, however, is a main obstacle to their practical applications. A promising attempt to solve this problem is by combined use of metal nanoparticles, by taking advantage of strong and localized plasmonic near-field to enhance solar absorption and to increase the electron-hole pair generation rate at the surface of semiconductor. Here, we report a semiconductor/metal visible-light photocatalyst based on CdSe/CdS-Au (QD-Au) core-satellite heteronanocrystals, and assemble them on graphene nanosheets for better photocatalytic reaction. The as-synthesized photocatalyst exhibits excellent plasmon-enhanced photocatalytic activities toward both photodegradation of organic dye and visible-light H-2 generation from water. The H-2 evolution rate achieves a maximum of 3113 mu mol h(-1) g(-1) for the heteronanocrystal-graphene composites, which is about 155% enhancement compared to nonplasmonic QD-G sample and 340% enhancement compared to control QD-Au-G sample, and the apparent quantum efficiency (QE) reaches to 25.4% at wavelength of 450 nm.